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o Error Curves for Lanczos' "Selected Points" Method

Abétract: In this pagﬁ%r we consider the solution.of.-ordinary-differential

:“:polynomigls from the point of view of construstivefumctiomthesrys -~ i . ..

BT L et e e NI

" We show how to obtain two new families of "selected points", one of which tends

to minimize the absolute maximum error of the solution, and the other tends to

é minimize the absolute value of the error at the final time point.

I. Introduction '

Various investigators (Clenshaw, 1957; Fox, 1962; Clenshaw and Norton, 1963;

i‘

a
Kizner, 1964; Wright, 1964) have made use of Lanczos' method of ‘selected pOintS“(zgucyﬁb
n .

$1956) in the solution of ordinary differential equations. The choice of these
Reconlly Tiloppi (1964)
points has been either the zeros of T (x) or the maxima of T (x). Here we  2tommundic
n n A :

e .
find two other choices of "slected points" and indicate their advantages. ehoice
. A ,(,(,&,(,C,& A

clae
n Ar
but his form of the residual, E =n (x - xi) ¥ (x), where § (x) is an unknown plemal
i=1 E
function which depends on the differential equation, is incorrect. In fact we

Wright (1964) attempts a justification of the choice of the zeroes of T, (x),

will show that local extrema occur near the X . ! ..

Some of our conclusions about the form of error curves are similar to "

Lanczos (1956). Whereas his discussion (p. 477) is concerned with a particular
equafion, we consider the question more generally.

Other topics that we consider concern estimates of the error when the length

P

E
3
%i : - of the 1nterva1;in which the solution is sought is changed, and the degree of the
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II1. Results from the Constructive Theory of Functions
: = F (¥, x) (1)

where Y = (y(l), y(z), e . y( )) is the derivative of Y with respect to x, the

1ndependent var:.able. We also assume that (1) holds for -1 £ x < 1,

To simplify ma.tters we will assume that m = 1, and call our solution ¥y (x)
In solving a differential equation by Lanczos' method, using n evaluation of
deriva.tives, we obtain & polynomial approximation of degree n,Py (x), for the
solution. In order to specify how "good" an approximation is, we adopt the

uniform norm. Thus

Iy @) =5, W =max |y () -2, () (2)

where we assume that y (x) is a contimuous function. Thus our prbblem is to
choose the "selected points" so that (2) is as small as possible, if not for all
F (¥, x) of (1) then for sufficiently "well behaved" functions F (y, x).

in order to see how good these approximations can be, we make use of results
from the constructive theory of functions. A good source for learning the
theory at about the level of a real variables course is Nata;son (1955). Golomb
(1962) provides a functional analysis oriented treatment with many new results.
The following fundemental theorem is due to Chebyshev and Borel.

Theorem 1. Let y (x) be a continuous function on [a, b] or y (x) ¢ C ‘ﬂ:a., b]%,

-and let the integer n be given. Define

E,=inf |y (@) -p, (0|
P, |

where P, (x) is any polynomilal of degree n or less.
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Then

a) There exists a polynomial ;n contained in the family of Py, such that

|y ) -5 ()]

b) For p (x) to have this property, it is necessary and sufficient that
(x) - p (x) attain its maximum absolute value Mda/t least n + 2 points of
[a., b}, and that the maxima alternate with the minima at these points.
¢) The polynomial B, (x) is unique.
The Welerstrass approximation theorem tells us that En tends to zero for
any continuous function. However, there is a theorem due to Bernstein, which

tells us that for any number sequence

there exists a function y (x) ¢ C §/a, b]} with the best approximations
En (Y) = An- «; Thus if a.ll we know about the function is that it is continuous,
it may be impractical to try to find a polynomial approximation for it.

The rate at which En tends to zero depends largely on the "degree of
smoothness" of the function approximated. In order of increasing smoothness we
list continuous functions, differentieble functions, n-times differentiabile
functions, infinitely differentiable functions, analytic function, entire
functions, and polynomials of restricted degree. The Following is an abstract
of results due to Jackson. The form of the theorem as stated here can be found

in Golomb (1962). By y (x) ¢ ¢ [a, b]we denote functions that have continuous

2® order derivates in [a, ﬂ .

Theorem II.

a) Ify (x) ¢ ¢' [a.', ’rﬂ such that for x ¢ [a, b:”y' (x) / <M, then
D) .
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(n+1) 2 '
b) Ify (x) e Cp[a, lﬂ , /yp (x)/ < Mp for x e.'@, bJ, and n > p,
- Y
. , En < P Mp (b a \
(n+1)n...(n-p+2) 2/
¢) Under the assumptions for (b) and n227p - k4
n® P
E < M b ~-a !
" . 4 e
Thus we have bounds on En which tell us how rapidly E  goes to zero. From ‘
(C)G we see that for any y (x) e CP [a, PJEn goes to zero at least as fast as
- - oo f
(n+ 1) P, When y (x) is infinitely differentiable on [a, bj ,ory(x)eC [c«—, ,0'}7
4@’* we have |
lim  (of E) =0 1
n-§8co 2
- S0weipms: for all p.
|
Bernstein has proved a converse theorem: u!{z RS
E < A :
n . - E}
(n+1)n;‘~.f..(n-p+2) . ' ‘ .f e
. - ”‘%:VZ

for a constant A, then y (x) ¢ cP Ea, t:]
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We next see what the convergence is for functions analytic on the line. y (x)

defined on [a, b] is said to be analytic on the interval if for any x_ e [a, b]

there is a power series

convergent for / X - xol < R,which represents the function at all points belonging
simultaneously to [a, I_)] and (xo -R, x + R). We denote by A l_a., bJ the class
of functions analytic in the segment [;, '27 . If R = oo, the function is seid
to be an entire function, Then we have:

Theorem III: Let y (x) ¢ C [a, bJ . Then £ (x) ¢ A[a, b] if and only if
n
En <K aq

where K and q < 1 are constants,

Moreover, y (x) is an entire function if and only if

1im
n |
n - 80 E, =0

To apply these theorems to solutions of differential equations (1), where
the solution is not available, we can make use of the following two fheorems
(Lefschetz){l%2) :

Theorem IV: Let F (y, x) of (1) be CP in y and x in a certain region Q of the
product space of y and x. Then the solution y (x, x°, yo), where xo_and y° are
P

the initial conditions, such that y (x°, x°, yo) = y° belongs to C'in x° and y°

and belongs to cP' linx.

oy

F’é,.‘t: |
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Theorem V: If F (y, x) i1s analytic in both variables and A is the domain of
analyticity then the solution y (x, x°, y°) such that (y (x), x) ¢ &, y (x°, x°, y°) = yo;
is analytic in all three arguments.

Havihg found good estimates of how En varies with increasing n for a

particular function defined in a given interval, we ask how En behaves when we

ORI

vary thé!inéé;va;;io?;?éry a and b, Here we have in mind the claims made that =
"global" methods are more efficient than "local" methods. Here Theorem II tells
us what to expect 1f these bounds are close to the best possible bounds. But
it is easy to show cases where these bounds are a poor indication of the actual
error. Theorem II does suggest that for a given y (x) ¢ CF [h, b{ and Mp more
or less independent of the-interval, that En is proportional to (b - a)min (n, »)
where by min (n, p) we mean choosing the minimum value from the collection of
values n and p. This result is consistent with our experimental findings.

Another approach that we might take is to assume that we have a "well

Aorn of Tl

behaved" function which can be expanded in a Chebyshev series such that theaerror

in using the truncated series is close to E . Elliott (1963) has derived the

following bound & , the coefficient of T (x) in the expansion of y (x) where

y (x) e ¢® [a, v].

a < n (3)

.,)
s,

A being a constant indepgg@gnt;of“h} .A 3 t Chebyshev expansions converge
_i;g;JLd::E5E:ZE;;;:;;:;;nctiens—than-ana;ytée—4£uactions_;:;satisfy&ng;:hga
A
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R Yet ithhe rlght 5135 0£(2) becomes arbitrarily large.
. Thus Elllott's bound may ,giwen misleading results even™when the function is

50

i analytic, n'm cases involving entire functions the bound~has proved to
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o &
vhere (x) is any polynomial of degree n or less that satisfies qn(a) = y()

e g () = y(®). men
: s) There exists a polynomial conta.ined in the family of
q,
a4, such that

E =llglv-g. (0]

b) For an(x) to have this property, it is necessary and sufficient
that y(x) - En(x) attain its meximum absolute. value
ot
Y2
alternate with the minima at these points.

at least n points of [a, b], and that the maxima

c) The polynomial §n(x) is unique.
Proof: The proof of existence (&) follows from a theorem in functional
analysis (Theorem 1.1 of Golomb (1962)) which states that when the
manifold of approximants is finite dimensional, the set of best approximations
1s non empty. BociolenTallly . e nearch fot o C“’“’& e &Mm Aﬁ;'

" Next we prove the sufficiency of condition (b). Suppose En(x)

is a polynomial such that it satisfies the boundary conditions and

y(x) - '&n(x) attains its maximum modulus M, with alternating signs,

at n po;nts of (&, b). If qn(x) is any other polynomial of degree n
satisfying the boundary conditions, we cannot have ' y(x) - qn(x), <M

e e

. Lt e T+ + QTN ke ¢, 0y o bre

. Brt aonitor Jo Ao W’w#v«n««—"—«- Mk o
s ok Moo pocit [ i (1)), Lo Tl oo e adotedt
| & aAProiglid Lons Aol audisfrppicty The foondansy T

L T T T VT 3
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, throughout [a, b] because the polynomial
3 : 2,09 =F () =[97)~ 2. ] =[410~¢.. (x)].. |

would be of alternating sign at the n points in question, and would
vanish at n-1 in (a, b) in addition to vanishing at the end points,
wvhich is impossible.

Next we show that condition (b) is necessary. Suppose the maximum
error M is attalned at fewer than n points having alternating sign.
Then the interval [a, b] can be subdivided into n-l1 subintervals, in

each of which we have one or the othér of the inequalities:

—Méa (-G (x) <H-€¢ o —H+e< »(x)- g (x) <M

satisfied alternately, where ¢ is a positive number. This can be done

Sy taking each subintefval to include one extremm of y(x) - En(x).

Let qn(x) be a polynomial which vanishes only at the end points and the
n-2 points common to two of these subintervals. Therefore for some choice

of parameter y, we have

| () =G aclx)- o 2. ()] < M

1%
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Contradicting the extremal property of En(x)
ana.uy concerning uniqueness, suppose qn(x) ’ qn(x) ’ qn(x) # qn(x)
are both a:trmls of our problem satisfying the boundary conditions.

‘Then so is
B )= 2] Hulr) + ¢ ()]

at
But y(x) - Rh(x) attains its extrema.}A fewer than n points, which is

impossible.
We now ask how much larger is E':n than E ? We can see immediately

that ﬁn <2 En’ since if we start out with f;n and add a first degree

polynomial to satisfy the boundary conditions, then the maximum increase

in the error modulus is En'

By meking some assumptions about the form of the error curves we
can obtain a more realistic estimate of the relationship of En and ﬁn'
We assume that the error curve for c';n(x) for [a, b] is the same as
for f:on(x), but with a larger interval [A, B], where A<a, and B>b.

In general we cen find an A and B which will satisfy these conditions,
assuming that the function y(x) can be continued beyond the original
interval. If in addition we assume that the ratio of the lengths

of the intervals is cos(% %—T) (assuming that I-’n (x) results in an

TP - .'.w?wrzvv.‘“. B = = e .
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error curve resembling Tn+l(x)) » and that E 1is proportional to the n+l

* the power of the ratio of the lengths of the interval, then

S E=n ) R ST E N
0"’7’(:.7;:,7 F ety

Thus for large n it appears that i:n tends to E .

V. Choices of "Selected Points"

At this point we have a clear picture of the optimm error curve,
associated with En(x). This error curve has n extrema alternating in
sign and is zero at the initial and final values of x. Now we seek to
choose "selected points" to achieve this form of error curve.
Consider the differential equation (1) with F ¢ C in y and x in
a region containing the solution of the differential equation for the
fixed initial conditions. Then Theorem IV implies that y(x) ¢ C[a, b],
which indicates that y(x) and y(x) have rapidly converging polynomial o
approximations.

We construct the error curve by starting out with the exact solutim

" and using Pica;df s method of successive approximations to see how the
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errors enter. Hopefully this method will converge rapidly for a large

enough n and a good choice of "selected points,” where n is the number

of "gelected points." This assumption will appear more reasonable Sillg

when certain matrices are derived. sw Aelina ﬂ . |
Thus we calculate the n values of the derivates at the "selected

points" using the exact solution to obtain Qﬂ.’ the first n-1 th

degree polynomial approximation for the derivative, and Ql, the first

n th degree polynomial approximation for y(x).
QJ. will differ from y(x) because 61 is inexact, except at some
few points. Hence the error curve associated with Q:L will have extrema
at the "selected points," where é’l is exact. o x
The next approximation is determined by equating 6’2 and £(g,’ )
at the "selected points." If a good choice of points has been made [

then for large enough n we expect that, because of averaging, the

integrated values, Q,, should not differ much from y(x) even though 61

may differ considerably from y(x). This implies that Q, will not differ

much from Q:l.' It is then our task to choose the points so that averaging T
.

does occur.

If we have only one dependent variable then one choice of "selected

points"” might be the n extremal points referred to in Theorem VI (b).

1
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This would make the maximum absolute error in Q’J. at the "selected points"

a§ small as possible while satisfying the boundary conditions. Thus

vhen E-is small enough so that f(f,"%) is close enough to f(&)),

Q,2 will not differ appreciably from Q’l’ and the procéss will have converged

in a practical sense. Unfortunately it may not be practical to calc;zla.te

these "select% points," except in an approximate manner to be described.
Thus we assume that the error curve y(x) - él(x) can be adaquately

represented by an n th degree polynomial. We can now easily calculate

the "selected points" since we know the form of the integrated error

curve, y(x) - Q:L(x). We guess that the integrated error curve is of the

form Tn+l(x) with a change in scale. We define & new "stretched"‘ polynomial

by
¥ ¥ ¥
mtr Neoy (D L pss (¥ axt (6)

[

%
From Theorem VI we see that Tn+l(x)’ -1 < x < 1, is the unique error
curve, since it has the required number (n) of extrema with the alternation

property. Thus the 'selected points" are given by
> 4

<) ..
L. = m(m+L A2
%[1 4 ]
We call this distribution the "extremal." '
- We shall call the usual distribution, based on the zeroes of T, a’

the Chebyshev. This choice tends to make ||y(x) - 'Ql(x)” small, but

not necessarily the integrated error curve. Another distribu,')tioiz) that
(L.

we might use is based on the zeroes of the Legendre polynomials, as used
A

in Gaussian quadnature. If we are particularly concerned with the

14
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’

accuracy of end point values, and the partial derivatives a; X ¥

are small, then this choice has much to commend it. Because of the properties

JE EER
.

of Gaussian ‘qu'ad.‘ature we expect to obtain excellent accuracy at the

end points provided the partial derivatives are small. We now seek to

show that
I 4(¥) - @, f7‘)u,,4w> N le) - Q, () b spne Il
Dl (%) - @, (%) sptiunae !l | >0

where by Q,l(x) cheby. 'S, Bean Q, determined by using the zeroes of 'I‘n(x) ’

and the corresponding quantities using the Gaussian abscissas and the

extremal points (§). Zer M =1 e gureeasf F) (%) el Zhe Lol
First we derive the form of the error curves for the first iteration.

For the Chebyshev case we obtain

) ~ Jf T () de!

-1 Tas (6) _ Tao (¥ 7] 4 0" [—L - L Az 2 i
. -L[_/K_*___ 7:___7 2 m+1 ! (?}

: Using the zeroces of the Legendre polynomials we obtain
P ¥ N
B R A

= .ilr:l [_P"‘“(Y)’P"“l /X>] rwz (‘1)

B s SN
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g :
From (7) ve see tha.t if n is odd there is no truncation error at the

end point xl. . For large n the term involving 2. .1 can

- -with-the ease using the zeroes of the Legendre polynomials.

n+tl - n-l
be neglected. It is easily shown from (7) that the signs of the e:tremal

points alternate and the magnitud.es are given by

C i {g- (3_:_5./)} 4):0,/, .-...m.-/

where c depends only on n and i is the number of the "selected point."

Thus the magnitudes of the extremas are small at the ends and are la.rgestv
at the middle of the interval. From ( $) it follows that for large n
about 29% of the extrema will have a magnitude between M, the maximum

of the extrema and .9M.

In Table I we show the results for other magnitudes and compare

, (? )

A

» DIS'I'RIBUTION OF THE MAGNITUDES OF ”

THE EXTREMA FOR LARGE n

Fraction Having Magnitudes
: : 2 90 M 2. 75M |2 .50M 2 .25M
Chebyshev zegmws .29 R Y .8l
Legendre zemees R 62 .84 .96
Table I

B
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10 '
To find a formula analogous to (g) for the Legendre case we make

use of the well known asymptotic formula
i

/mo) (o) it -4 i T

/" P P ‘
Using (19) to find the zeroes of ¥, and the amplitudes of ¥ 1 Ve find
that ,D(L Mt Lonniinn sl Al e ot

,f e [¥) =P (%) ar gemen /‘?

(1)

A amﬂ
I(lm*?)/.?f'/ﬂ)
{(m+/) T A [Z (349« ) } 00’3[ Hom +2 77
(2m+l)]
Qv Aorr monifilelion (O / by oo (/L}

Taus, the formule analogous to (9) 1s //044441 Ar e

[l (55T
A Vo~ /C‘O//

which for large n is like the square root of (Q)

3
(13) was evaluated for various n and compared with the exact results.
3
The maximm error, (1¢) for n = 6, 24, and 96 1s about .03, .01, and

+003 respectively. The results of Table I hold surprisingly well for

very small nfor b Vg ot e cbiston

(13)

v
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dn the basis of the distribution of the magnitudes of the extrema
we might guess that I~ (¥) -Q, (%) foboyotbionm //>///y/>0) Q@ /x)w //
For n = 1 the C points coincide.
It is possible to prove these results by expanding the error curve
in T'(ypolynomials, and note that if the term of highest u, cI (1)
i8 neglected, then we can compare the magnitude of ;with the magnitude
of the largest extrema of the error curve. This is similar to approximating
an n th degree polynomial by an n-l the degree polynomial by findingkthe
coefficient of T 7a.nd subtracting QT The results of these calculations
are shown in Figure I, where we give the ratio of // ,? /y) - Q, (x) S, 0 //
e ll oy (6) = Qi (%) gt gn It W 716) = Q1 (%) diprse 1 Z My ) -0 ]
The limit of these ratios as n approaches infinity is two and 4]_2 st
L‘espectively.
|

/o

' VI. Numerical Results

nrgele L

We now consider some examples to how well the theewetioald error
S (D), 9) et TF¥ ’
curves, agree with actual error curves. First we expect that the extrema

of the actual error curves occur close to the se.l.ected points. In addition

if y'(x) has a very rapidly converging polynomial expansion, then the
g /um(.l,(, Ly v

error curve should resemble (YH%@ our choices of selected

points."
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An example where both assumptions are fulfilled is the solution‘ e4§ :
%y_* = y, y(O) = 1, 0 S/[_S 1. 1In table II we show the results taking the
mmber of points, n, equal to five. ° ’ |
. ' . A
(f;rﬂvcmM%'&)M:\-'/?é/Lé
W Va&uw(/froblf —bw‘gv-']/.,(,w.,{,[,"/{ /VW)‘,.{/{M ,W.
Mbw Y10 .WGAM Aarlecled Josond - X’OL
/ -V N ¥ Loyl oSY 7 -1 y5
2 .o ¢l/ 3. 3 «2 308 NIV e} /- 36
3 -5 ~17¢ By Y “ligy
Vs 7939 . 3y 76 % L7588 103)
| 4735 |8 953y i c9YF3 Y7
‘ ‘ | :
#D—a/{vq,( T
. |
The errors given in Teble II are calculated at the "selected poirEs,"
: ) . . [N !
~ but would not vary much if calculated at the extremal points. |
Thus we see that for the extremai case the magnitude of the peaks of §
the error curve are nearly constant. For the Legendre case we choose \
. : » |
‘ 30

)

«.v';,' A
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‘a constant for the threpembieal curve (8) to match the middle residual

to obtain -l 12 l 5T, =1.71, 1.57 and -1.12.

" for the Chebyshev case we obtain -.24; 2.25, -1.78, 2.25, an

cufve, and the Legendre case the best.

+

If we do the same

and -.2h.
MQLQ/C_

Thus the Chebyshev case exhibits the poorest agreement with the theewetieadr

In other examples that we

calculated the Leggndre and extremal cases had error curves much closer .

‘to the t% curves than the Chebyshev case. Another quantit& .

that is of interest is the ratio of 4 /%) ~(Q (¥) oy, ) A=

//7&)-@/,)%5 M W»&WW#L& Byt

In Table III we show the résults for different n.

Let us now consider the error at the end point for the same equation.

bllinint of | g=ap i 15) &l it ok 1= 4

, Jol Vogehon | o | Eylilmat

3 | 2. o lsfluined-
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§ |*-710807 7832182829 la.7si s s
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December 31, 1964

Here we underline the first digit that must be changed. The exact value
for e is 2.7182818284590k..., s0 that the last result using the zeroes
of the Legend;re polynomials is good to 12 decimal places.

Various other differential equations were integrated. If the intervg.l
was chosen small enough to assume rapid convergence similar results
were found. Where the interval was large and convergence was slow the
results were erra.ticr But in all cases the peaks 1n the error curves
occurred close to the "selected points." And in all cases where the interval
was fixed and n varied the end point error decreased more rapidly for

the Legendre case than for the other two.
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VI. The Practical Calculation of Solutions by the Picard Method

One metﬂod of solution which is applicable to a wide range of problems is
based on the Picard method of successive approximations (Clenshaw and Norton 1963).
Other methods. in which the equations are linearized will be discussed in the next
secfion. s |

We seek a solution of

LY F )
S Flha), v)-n

(1a)
A
a <8 <b, where Yé are the initial conditions. With the change of variable
Jt'ﬂi/‘—_‘_,&‘@
A 2
‘we obtain
C&Y ' 4
L~ v A (), ey, o

| A~ a = '
, A= B RV )= FY , 409)

e o/
Next we evaluate F (Y, x) at the "g}ected points", fit the derivatives with pley-
nomials, and integrate to obtain the next approximation. Instead of carrying out

these operations explicitely we can simplify the calculations, and thereby gain in

accuracy and speed, by precalculating the results of these operations in the form of

matrices. We illustrate this first for the Legendre case (using the zeroes of the
Legendre polynomials for the "selected points"). If we assume that Y has only one

component, then the ith approximation _

.
|
|
|




(1)

m

de=

where W, ) 8Te the weight factors for Gaussian integration, n being the total
b .

number of points, and k the index of the point. Abscissas and weights for Gaussian

vr .
quadratiwes are tabulated in Gawlik (1958) and Davis and Rabinowitz (1956 and 1958).

(15) can be derived using the property of Gaussian quadrature that

ii 17¢ /f) 04?5 =:'j§§’ /427";/4L /7L { 7£zm7,lt )

whenever y (x) is a polynomial of degree s 2n-1, and the orthogonal relations of

Legendre polynomials

Sl P ly) P lx)or = = O e

Am |

where §  is the Knonecker delte function. Integrating (14)

n
QR.lx)= 2 4. P Ix%) (16)
)0 i
q,
/40 :/yo-—qb— ‘3
/6 - CL—/),‘-/ 4;,«, 9:"/ , " (17)
- ) )
2_4:-' léL +3

where aj =0 for j 2 n.

bed

) P. (%) F(Q;-, , 'X,;) Mori, ke (15)
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In evaluating a Legendre series or any series of polynomials p (x), I‘l (x), . .

satisfying a recursion of the form

b0 (x) =1 (18)
ey hle)
Aoy ¥) = gy 2y K)oy = Cpy s (W)

~

F2,3 .. (20)

as)

where the aa.'s, bJ.'s and cJ.'s are constants independent of x, Eke forizming Fheorem ¥ 1/ _

may be applied. The theorem in this form is due to Dr. C. L. Lawson of the Jet
Propulsion Laboratory. The motivation for the theorem is due to Clenshaw (1955).

Theorem VII: An expression of the form

¢ ()= i; ot ()

can be evaluated by the following recursion formulas:

v, ko
iy = (e o X) 5+

- - N S - .
’W-g' = (Q} 4/(,?/)(),,.,0-?.“ C;'Wj—'z 0(3, ¥ M2, M 3).

o ¥) = Wo n
To verify that wo is equal to Z di P (x) multiply the equation containing di by
i=0

Py (x) and sum these n + 1 equations obtaining
’ M. My - /
.Z Ayt () - ;—; lag 4y x) sy, 44?' ¥)
1o 9" " '

L men - <
- Z Cowve, @-/54/ + go ol 474'/7‘)

L0
? :

-
““44 r
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Then collect terms on the w 's obtaining

Z s Ly ) - (ag b X) o 0] 4 Oy Pin (%))
+M,/4’n (Y)‘ /004/00’\1.)%0 (y/) ~+ M‘D%o(Y): 2__ 0(}' %7/)()

* The coefficient of: "3’ J = 2, « « « 5 N, is zero because of (20) and the coefficient

T

of w, is zero because of (iQ) and the coefficient of q.a?s one because of (18).

Thus this equation reduces to

Z: dy ;5 /)L)

&——— vwhich is the desired result.
For Chebyshev polynomials T (x) =1, T, (x) = x, T, (x) = 2% - 1, etc., this
recursion becomes particularly simple because with the exception of bo all of the

ai's, bi’s, and,ci's are independent of i.

Q,: ) 4 z0, h
Ay =1

/4& =) 4 = /2,
C. = ¢ A = o /

For Legendre polynomials P_ (x) = 1, P, (x) = x, P, (x) = %-xa - 1, ete.

the constants are

a_,4~r,0 /(;O) /),
24+
v - . /L»O / .
* 4t !
A+ -
C’(: - :——: A’—v) /7"
vt

We note that the calculation of the coefficients and the evaluation of the
series are linear processes which relate calculated values of derivatives to the
values of the functions at the "selected points." Thus there exists an n x n matrix

G such that
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Q.. (x) - 4[@,,r(a~,x)+ G, /‘(Q&)y )+ ] 44, .
@4 (';Q)-.A[GNF{Q;,X,) +6G, ,F [C\?‘.’) 7(&>+ 1 +A

¢ -

C\')A-\‘( [

7&.

) ,4[(} F [Qa., ) * sz/: (Q\-— ,X,_?"‘ e ] -‘f¢¢

(21)

6 4o tHiZaired
Theroaladulebbon—ol-G-ionbdoompluahad by calculating each column in turn. For the

jth column set h = 1, F (Q.i,gék) =6 xj? Yo = 0+ The a's and b's are calculated
by (15) and (17) and the resulting series for Q,, is evaluated at the "selected
points". These are the elements of the jth column of G.

Although the solution is a.vailable in the form of a Legendre series it is
: T preferable to have it in the form of a Chebyshev series because Chebyshev

IR, Drirer Ml plecaTincg Lo 45

series w;oﬂevaluat?ﬂ Another reason is that the user can specify the
accuracy he desires more easily with a Chebyshev series. Again it is a straight«
forward matter to evaluate 1;he solution Q _, at the zeroes of Tl (;!L) and fit

them with Chebyshev polynomials. thus obtaining the H matrix defined by

QR (¢= f c.T./v) -

<4y B y (22) -
'—"&HE(Q;,X) -+ o
0
o | h F

* where ¢ is the column vector of ¢ o G102 ¢ ¢ o Cpo and ¥ is the column vector of

F(Qi’ l)’ F(Qi’ 32), o o

We exh1b1t the G a.nd H ma.tr:.ces for n = h for the Legendre case, the numbers
being correctly rounded off. The points are numbered starting with the point

¢ A .

’ closest to -1. ‘

22
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.17392742 4053208360 .025254925 -.0071}0299h
.37623623 .32607258 -.055760857 .013471001
.33438384 70790601 .32607258 -.028381390
3549651k T 62689023 70535352 17392142
H=
29205613 «39453250 25761265 055798711
.10736392 .39263608 .39263608 .10736392
-.08142227 -.14187965 .14187965 .0891k2227
066563505 - .066563505 - .066563505 . 066563505
-,028986L85 .073419724 -.07341972k4 .028986485

Similar matrices can be derived for the extremal case. But here there is &
difficulty in fitting éwi‘th a polynomial. The problem can be handled as follows:
J
By a change of scale _i = T 1
=X e (T 4,)
the points are given by

e fira . |
A= (%) A 1,2 L, (23)

If we include the points 4 0= 1 and /’?1+1 = -1 we can determine an n + lth degree

polynomial 4 (4) ~ 4 ¢, + T )+ A T, (4) +4 e, (A4)

. which takes on prescribed values at the n + 2 points by

u-

= 2 t e
CQ: Py Z /?'//t&’) Cr (4"" ;I.:,) 350, 1o, Ml (2

-

Ao

29
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with the understanding that the end points are taken with half weight. We now

Wi

define y (Ab) and y (/¢n+l) so that ¢ and c_ . are both zero. Thus to obtain the

kth column of G we let y C*k) =1,y C4i) =0fori=1,2,...n,1i#k, and

(A4 - ,,4 o
L A fen(Tek eemmk]

(25)

{/L;M‘f(>
M
7 :-’l[m#/é~m(ﬁ A)]
p R -t
| The Chegbyshev series is integrated with respect to dx and the constant of
integration chosen arbitrarily. The series may then be converted to power form
and the transformation made from to x and then transformed into a Chebyshev

series in x. Or the function can be evaluated at the points

4 mﬂ:’ 9'\'"/ !
PR /n-;, ¢ .l oy
and then fitted with a polynomlals in¥. Lastly the constant term is evaluated.

We exhibit the G and H matrices for n = I for the extremal case. Again the points
are renumbered starting with the point closest to -1.

v

G =

%p
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AnAalternative method is given by Filippi (1964) for doing this sort.of problem.
For large n it may be desirable to store the matrices on tape, since the
elements are used in a fixed order., Also it is clear that for large n we may

estimate the size o he e;ements in the H matrix by neglecting the difference

between x and A4, Thus for large n the elements of kth column of H are approximately
given by

/‘,a,/@c:- ‘12_ C?“' B C’}"'/ ) =

oo SR

W'.'LthHok=H]k-H2k+H3k0. .« e

From (24) to (26) ij < , j 2 1 when n is sufficiently large. This assures
' j(n+1)
us that the roundoff error will be small.

| NS [ -
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VII. Linearization of the Equations.
An approach to the solution of nonlinear ordinary differential equations,
expecially those that are (two point) boundary value problems is based on

linearizing the equations. One method of linearization depends on a generalization

T of Newton'éfiﬁeration formula to operator equations in Banach spaces obtained by

Kantorovich (1943), ’Hes;tenes (1949), Kalaba (1959), McGill and Kenneth (1964) and

others applied this method to boundary value problems. Norton (196l) showed how

+to implement this method using Chebyshev series.,

The method consists of solving (1) by iterations, the iteration being indicated

by a subscript:

Ajﬂf«' ~ F ("%,.;—/ 9 X) -+ //74"7/«\/) F/y__ [7—,,;-,7 7‘)

'

(27)

By adding to any solution of (27) a suitable solution of the homogeneous equation

+

’0517'/?74'/7&,/#) (28)

one can hope to satisfy the boundary conditions for each iteration.
Kizner (1964a) has shown another method for linearizing the equations. Let

us rewrite (1) as

G g AN Pl 2y -, T 9

X
where \ is a parameter that takes on values O < ¥ < 1., For \ = 1 (29) is identical

. . *
to (l),fgr A= Oyyi = y;_;+ Now conmsider y; as a function of both ¥ and A.

wl

K
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Then under very general conditions the following equation holds:

é ;)»{——y— F/y&,’l)’/?c-, + A )F//j&.'x) E_Z.";

(30) may be interpreted as a matrix equation when the number of dependent

variables is greater than one. Also

l
/ya\/\/') :?‘4‘/7/ ,) = %4-, ('\() °)+ ‘( 3‘;?,)%—%") d)-

(30)

(31)

Thus far we have made no approximations and no linearization., Now let us formally

e W

solve (31) by a "Runge-Kutta integration,f; The classical Runge-Kutta fourth order

formula "applied" to (31), with step size h = 1 results in the following set of

linear differential equations:

/74‘ (v, /) = Al {"f, °)+"('; [ 424 4 1/153 +,./eq).

where ki are solutions of (30) evaluated according to the following scheme:

(32)

-4 DF(/%.‘.-/')}H;Y) //é
u/; u

(33)

b

2

%Y
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In other words (30) is linearized by substituting for ¥i and )\ the approximate
expressions as given by a Runge-Kutta formula. This procedure can be justified in
the same way that Runge-Kutta formulas are justified for the numerical solution
of ordinary differential equations. Examples are given by Kizner (196ka).

The admantaggs of this method are that the boundary conditions are easily .
satisfied and that the convergence of the method seems to be increased., A similar
idea was applied by Kizner (1964b) to the solution of nonlinear eqpatlons. The

x4 e st P{f
reason for the success of "Runge-Kutta" type methods ssems to be ;@tﬂ gasd Runge-

Lot .
Kutta fqrmulasAtake account in part some of the higher order terms. A collection

of optimum Runge-Kutta formulas is given by Ralston (1962). Our experience with

these formulas, which is mainly in solving nonlinear equations, bears out the

theoretical results of Ralston about the size of the truncation errors for different
0Ler e formutas
formulas. Q7R more m,% Afpfol i cobble hpn Tl alonctapl
VIII. Conc1u81ons
Let us consider five choices for the n selected points.
Chebyshev
1. Zeroes of Tn’ called the ~choice
2. Zeroes of Pn’ called the Legendre choice
**
3. Extrema of the "stretched" Chebyshev polynomial Tn+l’ called the extremal
*%
choice. This is equivalent to using the zeroes of the derivative of Tn+l

4, The extrema of Tn-l’ as used by Clenshaw and his associates, called the

Clenshaw choice
5. The zeroes of T'ml, advocated by Filippi (1964), which we call the
Filippi choice.
For"well behaved" functions and a proper choice of n the extremal choice
yields the smallest maximum error, followed by the Legendre Fillipi, Chebyshev,
M preor of Uhe LG oanel Chebogebany- o7 MMM Ay,

and Clenshaw ch01ces. F111pp1 (1964) discusses the Clenshaw choice and shows examples

where it yields poor results.

2
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If we are interested in keeping the end point error as small as possible
we should use the Legendre choice, Here the differences in accuracy are not
something like a factor of 2, as for the previous criterion, but can amount to
many orders of magnitude.
V The a.uﬁh’or‘ 3ﬁéhes to thank Dr. C. L. Lawson of the Jet Propulsion Laboratory

for his discussion of this paper.
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